

Spectroscopy of charm baryons at LHCb

Vanya BELYAEV (CERN/Geneva & ITEP/Moscow) on behalf of LHCb collaboration

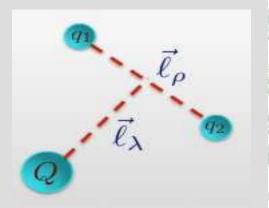
Salamanca

HADRON-

2017

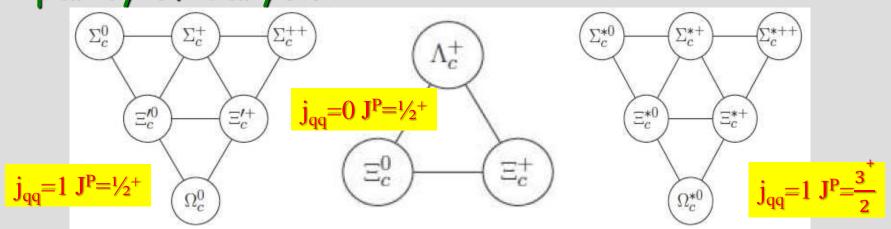
XVII International Conference on Hadron Spectroscopy and Structure

29.09.2k+17



Charm baryons

- Interesting spectroscopy:
 - Three quarks cq_1q_2 , many degrees of freedom
 - Some lack of experimental data
- Frequently used approach
 - Light diquark q₁q₂ + heavy c-quark
 - Scalar q₁q₂-diquark
 - The most «simple» hadrons
 - Light q₁q₂-diquark
 - HQET very successful approach



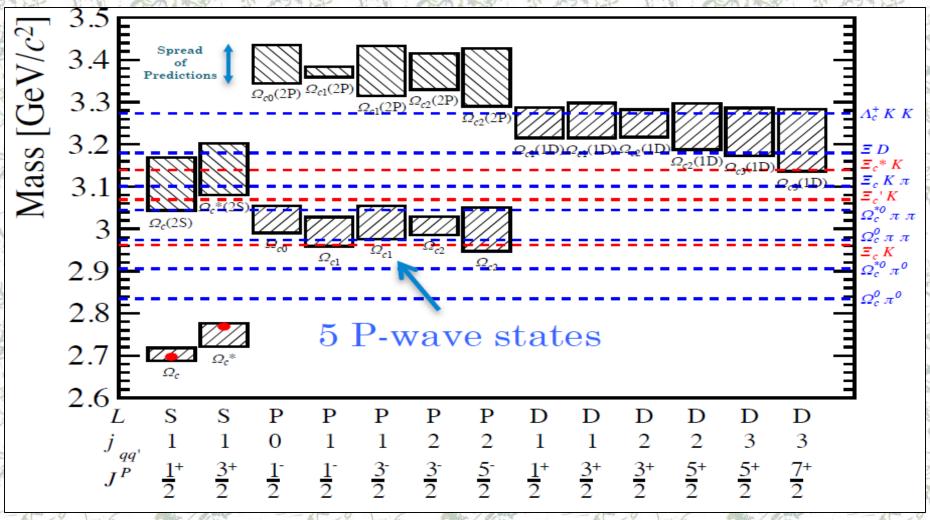
cq1q2 baryons

 $^{\bullet}$ Ground states: spin of light diquark j_{qq} , spin-parity of baryon J^{P}

- * All ground states are observed
 - © Precise measurements of masses and lifetimes
 - ② Quantum numbers are not measured explicitely

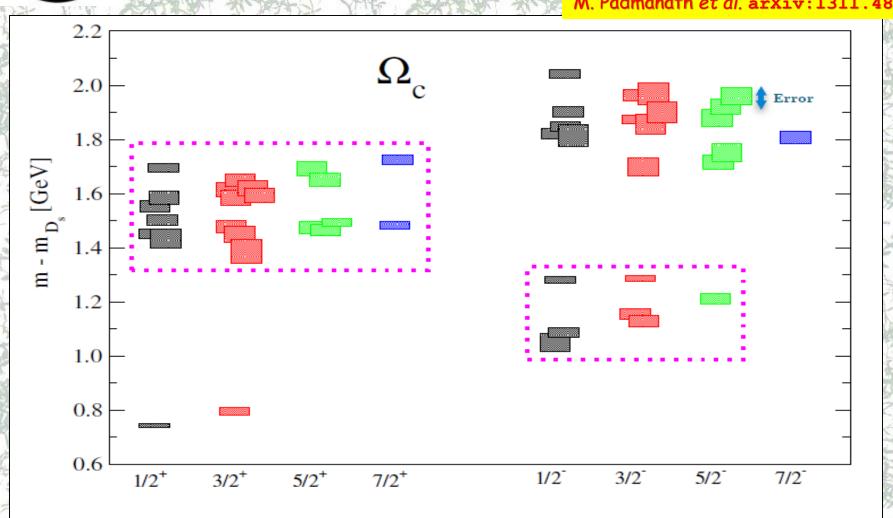
Excited states

2016 Review of Particle Physics. C. Patrignani <i>et al.</i> (Particle Data Group), Chin. Phys. C, 40 , 100001 (2016). CHARMED BARYONS ($C = +1$)						
Mini Reviews						
Charmed Baryons						
-						
Particles						
A_c^+	***					
$\Lambda_c^c(2595)^+$	***					
$\Lambda_c(2625)^+$	***					
$\Lambda_c(2765)^+$ or $arSigma_c(2765)$	*					
$\Lambda_{c}(2880)^{+}$	未完					
$arLambda_c(2940)^+$	***					
$\Sigma_c(2455)$	***					
$\Sigma_c(2520)$	***					
$\Sigma_c(2800)$	未完全 ・					
$\Sigma_c(2820)$ $\Sigma_c(2800)$ Ξ_c^+ Ξ_c^0 $\Xi_c^{'0}$ $\Xi_c^{'0}$ $\Xi_c(2645)$	***					
<i>□</i> _c	***					
\exists_c	***					
Ξ_c (2645)	***					
$\Xi_c(2790)$	***					
$\mathcal{Z}_c(2815)$	***					
$\mathcal{Z}_c(2930)$	*					
$\Xi_c(2970)$ was $\Xi_c(2980)$	***					
$\Xi_c(3055)$	***					
$egin{aligned} arEpsilon_c(3080) \ arEpsilon_c(3123) \end{aligned}$	*					
Ω_c^0	***					
$\Omega_c(2770)^0$	***					
32c(2110)						

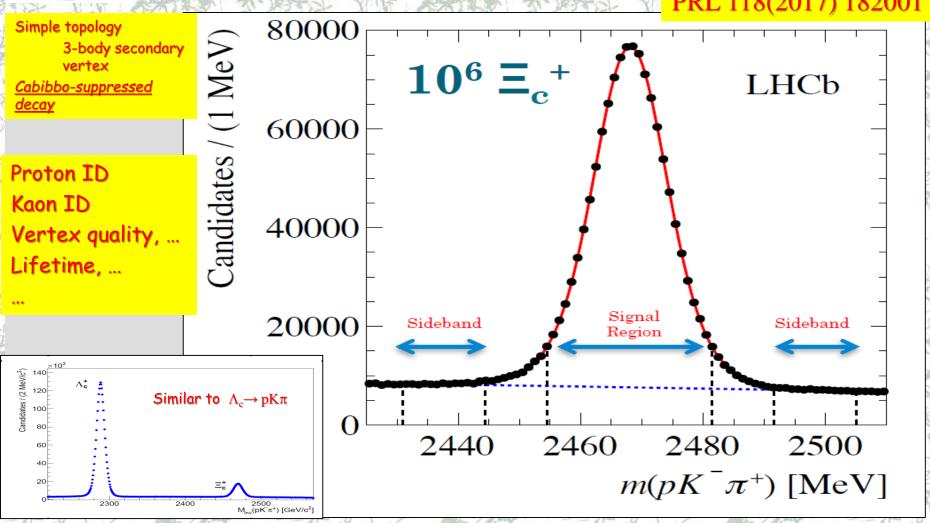

- PDG-2016:
 - No experimental data for excited Ω_c states
- Prelatively small production cross-sections
 - Both in e⁺e⁻ and in hadron collisions
 - Small $B(b \rightarrow \Omega_c X)$

Rich phenomenology, many predictions

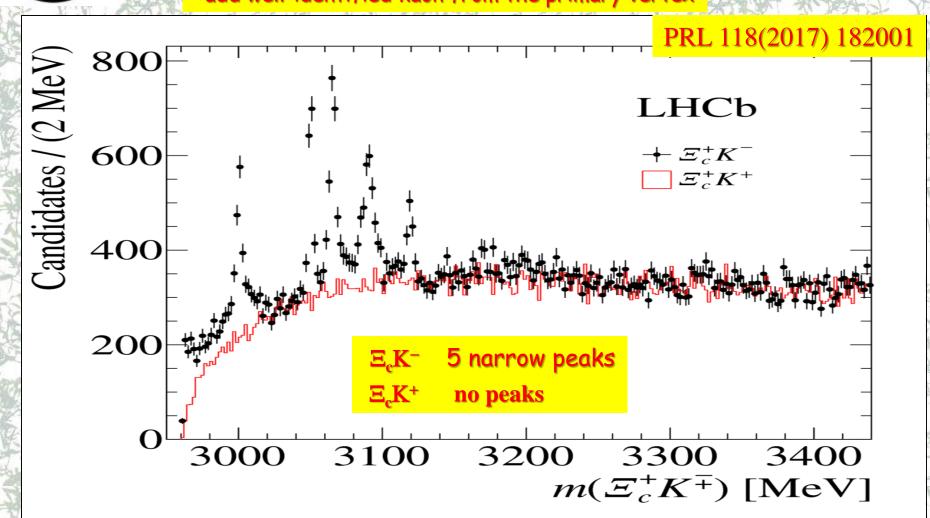
Several theory approaches, many predictions



Lattice QCD

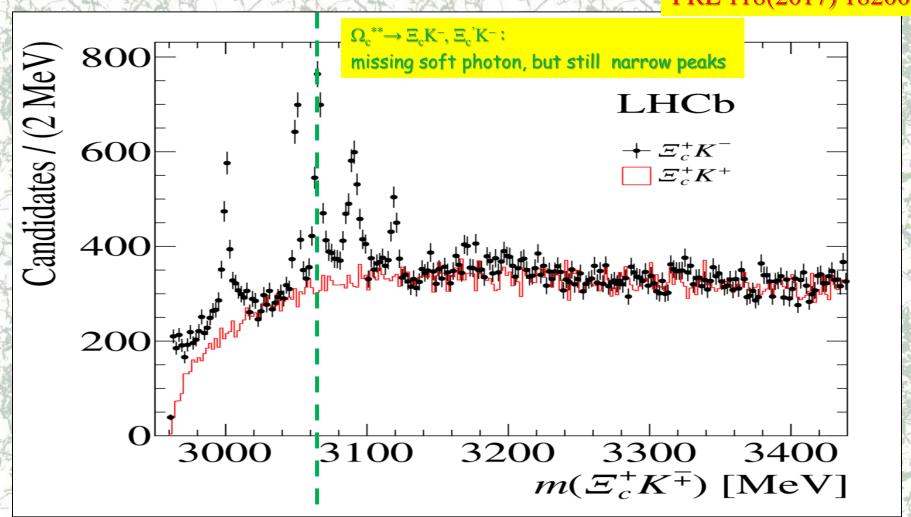

M. Padmanath et al. arxiv:1311.4806

$\Xi_c \rightarrow pK^-\pi^+$



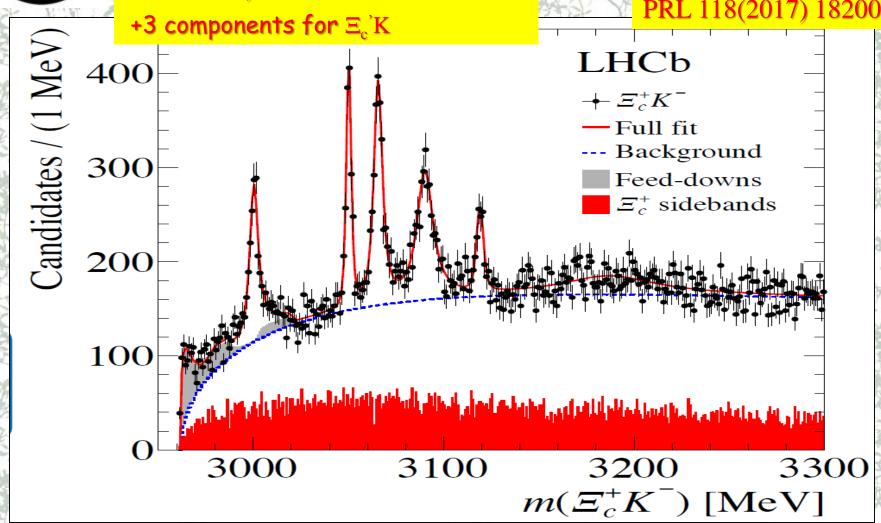
Ξ_c+K- spectrum

+add well-identified kaon from the primary vertex



Ξ_c+K⁻ spectrum

 $(\Xi_c^{'+} \to \Xi_c \gamma) \text{ K}^- \text{ threshold}$



Fit model

6 RBW*G, resolution: 0.7-1.7MeV/ c^2

Results

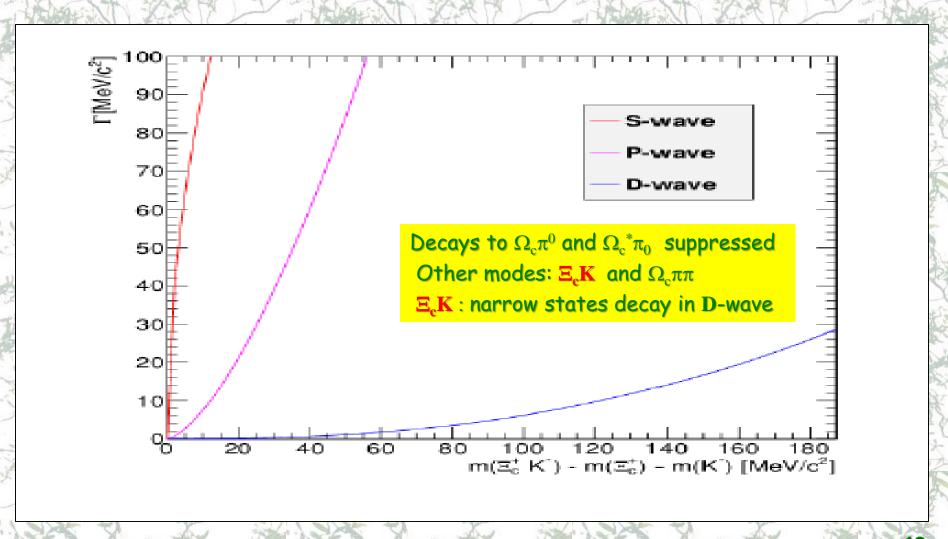
7-14-5	XYPI TITLE	SXLER TO THE	CON STATE OF THE	
Resonance	ce Mass (MeV)	$\Gamma \text{ (MeV)}$	Yield	N_{σ}
$\Omega_c(3000)$	$0 3000.4 \pm 0.2 \pm 0.1^{+0.3}_{-0.5}$	$4.5 \pm 0.6 \pm 0.3$	$1300 \pm 100 \pm 80$	20.4
$\Omega_c(3050)$	$0 3050.2 \pm 0.1 \pm 0.1^{+0.3}_{-0.5}$	$0.8 \pm 0.2 \pm 0.1$	$970 \pm 60 \pm 20$	20.4
		$<1.2\mathrm{MeV}, 95\%~\mathrm{CL}$		
$\Omega_c(3066)$	$0 3065.6 \pm 0.1 \pm 0.3^{+0.3}_{-0.5}$	$3.5 \pm 0.4 \pm 0.2$	$1740 \pm 100 \pm 50$	23.9
$\Omega_c(3090)$	$0 3090.2 \pm 0.3 \pm 0.5^{+0.3}_{-0.5}$	$8.7 \pm 1.0 \pm 0.8$	$2000 \pm 140 \pm 130$	21.1
$\Omega_c(3119)$	$0 3119.1 \pm 0.3 \pm 0.9^{+0.3}_{-0.5}$	$1.1\pm0.8\pm0.4$	$480 \pm 70 \pm 30$	10.4
		$<2.6\mathrm{MeV}, 95\%~\mathrm{CL}$		
$\Omega_c(3188)$	$0 3188 \pm 5 \pm 13$	$60 \pm 15 \pm 11$	$1670 \pm 450 \pm 360$	
$\Omega_c(3066)$	0 fd		$700 \pm 40 \pm 140$	
$\Omega_c(3090)$	0 fd		$220 \pm 60 \pm 90$	
$\Omega_c(3119)$	0 fd		$190 \pm 70 \pm 20$	

What are they?

Wang et al, PRD95(2017)116019

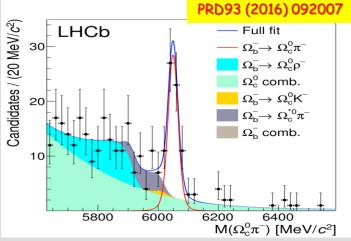
TABLE II: Spin-parity (J^P) numbers of the newly observed Ω_c states suggested in various works.

State	Agaev	Chen	Karliner	Padmanath	Chen	Cheng	Wang	Zhao	Agaev	Huang	Wang
$\Omega_c(3000)$		1/2-	1/2- (3/	2-) 1/2-	1/2-	1/2-	1/2-	1/2+ or 3/2+	1/2-		1/2-
$\Omega_c(3050)$		$1/2^{-}$	1/2- (3/	2-) 1/2-	5/2-	$3/2^{-}$	$1/2^{-}$	5/2+ or 7/2+	3/2-		3/2-
$\Omega_c(3066)$	1/2+	$1/2^+$ or $1/2^-$	3/2-(5/2	2-) 3/2-	3/2-	5/2-	3/2-	3/2-	1/2+		3/2-
$\Omega_c(3090)$			3/2- (1/	2+) 3/2-	1/2-	1/2+	3/2-	5/2-	1/2+		5/2-
$\Omega_c(3119)$	3/2+	3/2+	5/2- (3/	2+) 5/2-	3/2-	3/2+	5/2-	5/2+ or 7/2+	3/2+	1/2-	1/2 ⁺ or 3/2 ⁺


- 5 orbitally excited states?
 - Why all 5 are narrow?
- 3 orbitally excited + 2 radial excitations?
 - Where are 2 "missing" orbital excitations?
- Pentaquarks?
 - 222

Why are they so narrow?

Why are they so narrow?


- 5 narrow states are observed
 - (+hint for possible wide state(s))
 - 2 of them are extremely narrow
- (Unfortunately) quantum numbers are now know
- Most "popular" interpretation:
 - 5 P-wave states: $j_{ss}=1, L_{(ss)c}=1$
 - $2\times(1/2)^ 2\times(3/2)^ 1\times(5/2)^-$
- Other interpretations also possible
 - $2\times(3/2)^ 1\times(5/2)^-$ and (2S): $(1/2)^+(3/2)^+$

Prospects: quantum numbers

- Fully reconstructed decays: $\Omega_b^- \rightarrow (\Xi_c^+ K^-) \pi^-$
 - Similar decay $\Omega_b^- \to (\Omega_c^{\ 0} \to pKK\pi) \pi^-$ is observed: the same quark diagram, the same number and type of tracks in final state $_{\odot}$

- ullet With larger statistics determination of spin-parity of $\Omega_{
 m c}^{**}$ resonances should be possible
 - proof & examples in the next (S.Neubert's) talk

Thank you!

